Novel Molecular Representations Using Neumann-Cayley Orthogonal Gated Recurrent Unit

Abstract

Advances in deep neural networks (DNNs) have made a very powerful machine learning method available to researchers across many fields of study, including the biomedical and cheminformatics communities, where DNNs help to improve tasks such as protein performance, molecular design, drug discovery, etc. Many of those tasks rely on molecular descriptors for representing molecular characteristics in cheminformatics. Despite significant efforts and the introduction of numerous methods that derive molecular descriptors, the quantitative prediction of molecular properties remains challenging. One widely used method of encoding molecule features into bit strings is the molecular fingerprint. In this work, we propose using new Neumann–Cayley Gated Recurrent Units (NC-GRU) inside the Neural Nets encoder (AutoEncoder) to create neural molecular fingerprints (NC-GRU fingerprints). The NC-GRU AutoEncoder introduces orthogonal weights into widely used GRU architecture, resulting in faster, more stable training, and more reliable molecular fingerprints. Integrating novel NC-GRU fingerprints and Multi-Task DNN schematics improves the performance of various molecular-related tasks such as toxicity, partition coefficient, lipophilicity, and solvation-free energy, producing state-of-the-art results on several benchmarks.

Publication
Journal of Chemical Information and Modeling, 63(9)
Duc Nguyen
Duc Nguyen
Associate Professor of Mathematics

Duc Nguyen develops mathematical and AI frameworks for molecular bioscience, drug discovery, and scientific computing. His group blends differential geometry, graph theory, and machine learning to build high-fidelity models for biomolecular systems, with notable wins in the D3R Grand Challenges and collaborations with Pfizer and Bristol Myers Squibb. Supported by multiple NSF awards, he has advised students and postdocs across theory and applications of AI-driven drug design.