MathDL: mathematical deep learning for D3R Grand Challenge 4

Abstract

We present the performances of our mathematical deep learning (MathDL) models for D3R Grand Challenge 4 (GC4). This challenge involves pose prediction, affinity ranking, and free energy estimation for beta secretase 1 (BACE) as well as affinity ranking and free energy estimation for Cathepsin S (CatS). We have developed advanced mathematics, namely differential geometry, algebraic graph, and/or algebraic topology, to accurately and efficiently encode high dimensional physical/chemical interactions into scalable low-dimensional rotational and translational invariant representations. These representations are integrated with deep learning models, such as generative adversarial networks (GAN) and convolutional neural networks (CNN) for pose prediction and energy evaluation, respectively. Overall, our MathDL models achieved the top place in pose prediction for BACE ligands in Stage 1a. Moreover, our submissions obtained the highest Spearman correlation coefficient on the affinity ranking of 460 CatS compounds, and the smallest centered root mean square error on the free energy set of 39 CatS molecules. It is worthy to mention that our method on docking pose predictions has significantly improved from our previous ones.

Publication
Journal of Computer-Aided Molecular Design, 34(2)
Duc Nguyen
Duc Nguyen
Associate Professor of Mathematics

Duc Nguyen develops mathematical and AI frameworks for molecular bioscience, drug discovery, and scientific computing. His group blends differential geometry, graph theory, and machine learning to build high-fidelity models for biomolecular systems, with notable wins in the D3R Grand Challenges and collaborations with Pfizer and Bristol Myers Squibb. Supported by multiple NSF awards, he has advised students and postdocs across theory and applications of AI-driven drug design.