AweGNN: Auto-parametrized weighted element-specific graph neural networks for molecules

Abstract

While automated feature extraction has had tremendous success in many deep learning algorithms for image analysis and natural language processing, it does not work well for data involving complex internal structures, such as molecules. Data representations via advanced mathematics, including algebraic topology, differential geometry, and graph theory, have demonstrated superiority in a variety of biomolecular applications, however, their performance is often dependent on manual parametrization. This work introduces the auto-parametrized weighted element-specific graph neural network, dubbed AweGNN, to overcome the obstacle of this tedious parametrization process while also being a suitable technique for automated feature extraction on these internally complex biomolecular data sets. The AweGNN is a neural network model based on geometric-graph features of element-pair interactions, with its graph parameters being updated throughout the training, which results in what we call a network-enabled automatic representation (NEAR). To enhance the predictions with small data sets, we construct multi-task (MT) AweGNN models in addition to single-task (ST) AweGNN models. The proposed methods are applied to various benchmark data sets, including four data sets for quantitative toxicity analysis and another data set for solvation prediction. Extensive numerical tests show that AweGNN models can achieve state-of-the-art performance in molecular property predictions.

Publication
Computers in Biology and Medicine, 134
Duc Nguyen
Duc Nguyen
Associate Professor of Mathematics

Duc Nguyen develops mathematical and AI frameworks for molecular bioscience, drug discovery, and scientific computing. His group blends differential geometry, graph theory, and machine learning to build high-fidelity models for biomolecular systems, with notable wins in the D3R Grand Challenges and collaborations with Pfizer and Bristol Myers Squibb. Supported by multiple NSF awards, he has advised students and postdocs across theory and applications of AI-driven drug design.