Machine intelligence design of 2019-nCoV drugs

Abstract

Wuhan coronavirus, called 2019-nCoV, is a newly emerged virus that infected more than 9692 people and leads to more than 213 fatalities by January 30, 2020. Currently, there is no effective treatment for this epidemic. However, the viral protease of a coronavirus is well-known to be essential for its replication and thus is an effective drug target. Fortunately, the sequence identity of the 2019-nCoV protease and that of severe-acute respiratory syndrome virus (SARS-CoV) is as high as 96.1%. We show that the protease inhibitor binding sites of 2019-nCoV and SARS-CoV are almost identical, which means all potential anti-SARS-CoV chemotherapies are also potential 2019-nCoV drugs. Here, we report a family of potential 2019-nCoV drugs generated by a machine intelligence-based generative network complex (GNC). The potential effectiveness of treating 2019-nCoV by using some existing HIV drugs is also analyzed.

Publication
bioRxiv
Duc Nguyen
Duc Nguyen
Associate Professor of Mathematics

Duc Nguyen develops mathematical and AI frameworks for molecular bioscience, drug discovery, and scientific computing. His group blends differential geometry, graph theory, and machine learning to build high-fidelity models for biomolecular systems, with notable wins in the D3R Grand Challenges and collaborations with Pfizer and Bristol Myers Squibb. Supported by multiple NSF awards, he has advised students and postdocs across theory and applications of AI-driven drug design.