Multiscale laplacian learning

Abstract

Machine learning has greatly influenced a variety of fields, including science. However, despite tremendous accomplishments of machine learning, one of the key limitations of most existing machine learning approaches is their reliance on large labeled sets, and thus, data with limited labeled samples remains an important challenge. Moreover, the performance of machine learning methods is often severely hindered in case of diverse data, which is usually associated with smaller data sets or data associated with areas of study where the size of the data sets is constrained by high experimental cost and/or ethics. These challenges call for innovative strategies for dealing with these types of data.

Publication
Applied Intelligence, 53(12)
Duc Nguyen
Duc Nguyen
Associate Professor of Mathematics

Duc Nguyen develops mathematical and AI frameworks for molecular bioscience, drug discovery, and scientific computing. His group blends differential geometry, graph theory, and machine learning to build high-fidelity models for biomolecular systems, with notable wins in the D3R Grand Challenges and collaborations with Pfizer and Bristol Myers Squibb. Supported by multiple NSF awards, he has advised students and postdocs across theory and applications of AI-driven drug design.