Review of COVID-19 Antibody Therapies

Abstract

In the global health emergency caused by coronavirus disease 2019 (COVID-19), efficient and specific therapies are urgently needed. Compared with traditional small-molecular drugs, antibody therapies are relatively easy to develop; they are as specific as vaccines in targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); and they have thus attracted much attention in the past few months. This article reviews seven existing antibodies for neutralizing SARS-CoV-2 with 3D structures deposited in the Protein Data Bank (PDB). Five 3D antibody structures associated with the SARS-CoV spike (S) protein are also evaluated for their potential in neutralizing SARS-CoV-2. The interactions of these antibodies with the S protein receptor-binding domain (RBD) are compared with those between angiotensin-converting enzyme 2 and RBD complexes. Due to the orders of magnitude in the discrepancies of experimental binding affinities, we introduce topological data analysis, a variety of network models, and deep learning to analyze the binding strength and therapeutic potential of the 14 antibody–antigen complexes. The current COVID-19 antibody clinical trials, which are not limited to the S protein target, are also reviewed.

Publication
Annual Review of Biophysics
Duc Nguyen
Duc Nguyen
Associate Professor of Mathematics

Duc Nguyen develops mathematical and AI frameworks for molecular bioscience, drug discovery, and scientific computing. His group blends differential geometry, graph theory, and machine learning to build high-fidelity models for biomolecular systems, with notable wins in the D3R Grand Challenges and collaborations with Pfizer and Bristol Myers Squibb. Supported by multiple NSF awards, he has advised students and postdocs across theory and applications of AI-driven drug design.